Iterative Space Alternate Tiling Parallel Gauss-Seidel Algorithm

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-adaptive Extrapolated Gauss-Seidel Iterative Methods

In this paper, we consider a self-adaptive extrapolated Gauss-Seidel method for solving the Hermitian positive definite linear systems. Based on optimization models, self-adaptive optimal factor is given. Moreover, we prove the convergence of the self-adaptive extrapolated Gauss-Seidel method without any constraints on optimal factor. Finally, the numerical examples show that the self-adaptive ...

متن کامل

A Parallel Gauss-Seidel Algorithm for Sparse Power Systems Matrices

We describe the implementation and performance of an e cient parallel Gauss-Seidel algorithm that has been developed for irregular, sparse matrices from electrical power systems applications. Although, Gauss-Seidel algorithms are inherently sequential, by performing specialized orderings on sparse matrices, it is possible to eliminate much of the data dependencies caused by precedence in the ca...

متن کامل

Proof of Correctness for Sparse Tiling of Gauss-Seidel

Gauss-Seidel is an iterative computation used for solving a set of simultaneous linear equations, A~u = ~ f . If the matrix A uses a sparse matrix representation, storing only nonzeros, then the data dependences in the computation arise from A’s nonzero structure. We use this structure to schedule the computation at runtime using a technique called full sparse tiling. The sparse tiled computati...

متن کامل

Combining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling

Finite Element problems are often solved using multigrid techniques. The most time consuming part of multigrid is the iterative smoother, such as Gauss-Seidel. To improve performance, iterative smoothers can exploit parallelism, intra-iteration data reuse, and inter-iteration data reuse. Current methods for parallelizing Gauss-Seidel on irregular grids, such as multi-coloring and ownercomputes ...

متن کامل

Parallel Multigrid Smoothing: Polynomial versus Gauss-seidel

Gauss-Seidel method is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Software

سال: 2008

ISSN: 1000-9825

DOI: 10.3724/sp.j.1001.2008.01274